34 research outputs found

    Identification of type 2 diabetes loci in 433,540 East Asian individuals

    Get PDF
    Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes—NKX6-3 and ANK1—in different tissues4–6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population

    Synthesis of lithiophorite in high alkaline conditions

    No full text
    Lithiophorite consists of alternatively stacked MnO6 octahedral sheets and LiAl2(OH)(6) octahedral sheets. Its applications in laboratories and industries have been hindered by sophisticated operation procedures, long reaction time, or impurities existing in the final product. We proposed a fast and simple method, mixing birnessite, aluminate and lithium hydroxide together (designated it as the BAL method) in high alkaline conditions (pH > 13), and treating it hydrothermally at 423 K for 6 hours to prepare pure lithiophorite. A specific reaction between lithium cations and aluminate anions plays as a key role in the BAL method. Due to this specific reaction, LixAln(OH)(m)(+z) complexed cations can form and penetrate into interlayers of birnessite to replace sodium cations. In high alkaline conditions (pH > 12), LixAln(OH)(m)(+z) complexed cations become smaller and are soluble. Thus, the higher alkaline LixAln(OH)(m)(+z) complexed cations can penetrate into interlayers of birnessite at a higher rate. Furthermore, impurities, such as lithium intercalated gibbsite (LIG), aluminum oxyhydroxides and aluminum hydroxides are not stable in high alkaline conditions. Consequently, pure lithiophorite can be easily obtained within 6 hours in high alkaline conditions

    Origin of thermal degradation of Sr 2-xSi 5N 8: Eu x phosphors in air for light-emitting diodes

    No full text
    The orange-red emitting phosphors based on M 2Si 5N 8:Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance applications because of their excellent thermal and chemical stabilities. A series of nitridosilicate phosphor compounds, M 2-xSi 5N 8:Eu x (M = Sr, Ba), were prepared by solid-state reaction. The thermal degradation in air was only observed in Sr 2-xSi 5N 8:Eu x with x = 0.10, but it did not appear in Sr 2-xSi 5N 8:Eu x with x = 0.02 and Ba analogue with x = 0.10. This is an unprecedented investigation to study this phenomenon in the stable nitrides. The crystal structural variation upon heating treatment of these compounds was carried out using the in situ XRD measurements. The valence of Eu ions in these compounds was determined by electron spectroscopy for chemical analysis (ESCA) and X-ray absorption near-edge structure (XANES) spectroscopy. The morphology of these materials was examined by transmission electron microscopy (TEM). Combining all results, it is concluded that the origin of the thermal degradation in Sr 2-xSi 5N 8:Eu x with x = 0.10 is due to the formation of an amorphous layer on the surface of the nitride phosphor grain during oxidative heating treatment, which results in the oxidation of Eu ions from divalent to trivalent. This study provides a new perspective for the impact of the degradation problem as a consequence of heating processes in luminescent materials

    Enhanced hole mobility in poly-(2-methoxy-5-(2 '-ethylhexoxy)-1,4-phenylenevinylene) by elimination of nanometer-sized domains

    No full text
    The application of an electric field (E-cast) during solvent vaporization is shown to inhibit the formation of ordered domains in thin films of a poly(phenytenevinylene) derivative, resulting in a homogeneous environment favorable for charge transfer. An order-of-magnitude increase in charge-carrier mobility (see Figure) is achieved by the elimination of these commonly found domains

    Synthesis of a reusable oxotungsten-containing SBA-15 mesoporous catalyst for the organic solvent-free conversion of cyclohexene to adipic acid

    No full text
    An oxotungsten-silica mesoporous structure (WSBA-15) has a hierarchical crystalline architecture in which the W dopants possess tetrahedral coordination geometries for the mixed-valence states W6+, W5+, and W4+. The WSBA-15 catalyst can be recycled-without any loss of activity-for the direct oxidation (30% H2O2,) of cyclohexene to colorless, crystalline adipic acid (55% yield) under organic solvent-free conditions. (C) 2006 Elsevier B.V. All rights reserved

    Crystal structure and electronic and thermal properties of TbFeAsO0.85

    Get PDF
    The crystal structure and the electronic and thermal properties of a high-quality polycrystalline TbFeAsO0.85 sample made by a high-pressure technique are investigated. The crystal structure, as determined by synchrotron X-ray powder diffraction, possesses a tetragonal unit cell (space group: P4/nmm) with lattice parameters of a=b=3.8851 Å and c =8.3630 Å. In order to elucidate the electronic structure and oxidation states of corresponding elements, X-ray absorption near-edge structure (XANES) spectra are presented. The XANES spectra confirm that the oxidation states of Fe, As, and Tb in the TbFeAsO0.85 sample are ~Fe2+, ~As3−, and ~Tb3+, respectively, which are consistent with the previously reported band structure calculations. The n-type character of the charge carriers as revealed from XANES spectra is corroborated by the negative sign of the Seebeck coefficient (S) in the present study. The heat capacity (CP) measurement shows an anomaly in the vicinity of the superconducting transition temperature (Tc=42.5 K), which confirms the bulk nature of the superconductivity in this material

    Amyloid-like fibril formation in an all beta-barrel protein - Partially structured intermediate state(s) is a precursor for fibril formation

    No full text
    Acidic fibroblast growth factor from newt (Notopthalmus viridescens) is a similar to15-kDa, all beta-sheet protein devoid of disulfide bonds. In the present study, we investigate the effects of 2,2,2-trifluoroethanol (TFE) on the structure of newt acidic fibroblast growth factor (nFGF-1). The protein aggregates maximally in 10% (v/v) TFE. Congo red and thioflavin T binding experiments suggest that the aggregates induced by TFE have properties resembling the amyloid fibrils. Transmission electron microscopy and x-ray fiber diffraction data show that the fibrils (induced by TFE) are straight, unbranched, and have a cross-beta structure with an average diameter of 10-15 Angstrom. Preformed fibrils (induced by TFE) of nFGF-1 are observed to seed amyloid-like fibril formation in solutions containing the protein (nFGF-1) in the native beta-barrel conformation. Fluorescence, far-UV CD, anilino-8-napthalene sulfonate binding, multidimensional NMR, and Fourier transformed infrared spectroscopy data reveal that formation of a partially structured intermediate state(s) precedes the onset of the fibrillation process. The native beta-barrel structure of nFGF-1 appears to be disrupted in the partially structured intermediate state(s). The protein in the partially structured intermediate state(s) is found to be &quot;sticky&quot; with a solvent-exposed non-polar surface(s). Amyloid fibril formation appears to occur due to coalescence of the protein in the partially structured intermediate state(s) through solvent-exposed non-polar surfaces and intermolecular beta-sheet formation among the extended, linear beta-strands in the protein
    corecore